ATTORNEYS AT LAW
1000 EAGLE GATE TOWER

60 EAST SOUTH TEMPLE
SALT LAKE CITY, UTAH 84111

WORKMAN, NYDEGGER & SEELEY
A PROFESSIONAL CORPORATION

Express Mailing Label No. EV 382942125 US PATENT APPLICATION
Docket No. 13768.496

UNITED STATES PATENT APPLICATION

of

Umesh Madan,
David A. Wortendyke
and

Geary L. Eppley,

for

FORWARD-ONLY EVALUATION FOR XPATH INVERSE QUERY PROCESSING

A PROFESSIONAL CORPORATION
ATTORNEYS AT LAW
1000 EAGLE GATE TOWER
60 EAST SOUTH TEMPLE
SALT LAKE CITY, UTAH 84111

WORKMAN, NYDEGGER & SEELEY

FORWARD-ONLY EVALUATION FOR XPATH INVERSE QUERY PROCESSING

BACKGROUND OF THE INVENTION

1. The Field of the Invention

[0001] The present invention relates to query processing; and more specifically, to

forward-only evaluations for XPATH inverse query processing.

2. Background and Related Art

[0002] Computing technology has transformed the way we work and play. Computing
systems now take a wide variety of forms including desktop computers, laptop computers,
tablet PCs, Personal Digital Assistants (PDAs), household devices and the like. In its most
basic form, a computing system includes system memory and one or more processors.
Software in the system memory may be executed by the processor to direct the other
hardware of the computing system to perform desired functions.

[0003] The ability to process information is essential to the performance of a computing
system. One type of processing is called “filtering”. In particular, a filter is a query that
returns true or false against an input. When a vast collection of filters (e.g., a filter table) are
used against the input, each filter may test for different characteristics of the input.
Accordingly, some of the filters may return true and some may return false, depending on
the characteristics of the input. Regardless, the filters can provide significant information
regarding the input. This allows fhe computing system to take appropriate action given the

characteristics of the input. The filter table receives an input, and tests multiple queries

- Page 2 - Docket No. 13768.496

>

[£4]

—

4}

48]

C/)Z =

QLS Hug

MEEEE

mo3LEZ

QgLrEs

Ouw:Ey

mIRo2E

SE2sds
@ =

ZEp52%

Z»g<8g:
a -1

§< 3

O

=

against that input. In contrast, direct querying entails receiving a query, and testing the
multiple inputs against that query. According, a filter table is a type of inverse query engine.
[0004] An XPATH filter engine is a type of inverse query engine in which the filters are
defined using the XPATH language. The message bus filter engine matches filters against
eXtensible Markup Language (XML) to evaluate which filters return true, and which return
false. In one conventional implementation, the XML input may be a Simple Object Access
Protocol (SOAP) envelope or other XML document received over a network.

[0005] In conventional inverse query engines, when a filter table is to be evaluated again
an input, each filter is evaluated by executing a particular set of instructions. Each filter is
evaluated independently by executing the particular set of instructions corresponding to each
filter. In systems in which there are numerous filters, it may take considerable processing
resources and time to perform the full evaluation on the input. This may become
particularly problematic if inputs are frequently received for such evaluation.

[0006] For example, in a network environment, it is possible for a server to receive
many network messages, each potentially representing one or more inputs to the inverse
filter engine. Even if the server has rich processing resources, the server may become
burdened or may simply not be able to handle all of the requests. Yet, inverse query engines
are an effective way for computing systems to handle incoming information. Accordingly,
what is desired is a mechanism that reduces the processing resources required to process an

inverse query engine against an input.

- Page 3 - Docket No. 13768.496

60 EAST SOUTH TEMPLE

SALT LAKE CITY, UTAH 84111

ATTORNEYS AT LAW
1000 EAGLE GATE TOWER

A PROFESSIONAL CORPORATION

WORKMAN, NYDEGGER & SEELEY

BRIEF SUMMARY OF THE INVENTION

[0007] The foregoing problems with the prior state of the art are overcome by the
principles of the present invention, which is directed towards an inverse query engine that
uses an instruction tree to represents the queries to be applied against input, instead of
applying each query individually. Each node in the instruction tree represents executable
code. Each branch of the instruction tree when executed from the root node to a terminating
branch node represents the instructions to be executed to process that query against the
input.

[0008] The instruction tree is forward-only in that once a node in a tree is processed
against an input, that executable code associated with that node is not ever processed again
for that input. The queries may be compiled to be forward-only such that there is no
branching back to prior executed instructions. Accordingly, processing resources and time
is conserved. In an environment in which inputs are frequently received for inverse query
processing, this can have a substantial performance gain for the computing system as a
whole.

[0009] During operation, the inverse query engine receives an electronic message.
Then, the instruction tree is executed against the electronic message. First, instructions are
executed in the instruction tree leading from the root node to a main branching node.
Whenever the inverse query engine encountering a branching node, the inverse query engine
preserves processing context for the sequential execution up to that branching node. The
inverse query engine then executes the instructions in each main branch. Execution of a
main branch likewise involves executing instructions leading from the prior branching node

to the next branching node. Then, second-order branches are navigated in the same manner.

- Page 4 - Docket No. 13768.496

S
m

—

63

52}

U)Z -
QB2 Hug
HE
UJO»—HQL:.)E
QELrES
Oum<E>:
mIZV2E
QZ2430
S SEDcuw
Zﬁgﬁgﬁ
LS gud
Z & 884
§< 5)
@)

=

This process is recursively performed until all of the instructions in the tree have been
executed.

[0010] Additional features and advantages of the invention will be set forth in the
description that follows, and in part will be obvious from the description, or may be learned
by the practice of the invention. The features and advantages of the invention may be
realized and obtained by means of the instruments and combinations particularly pointed out
in the appended claims. These and other features of the present invention will become more
fully apparent from the following description and appended claims, or may be learned by the

practice of the invention as set forth hereinafter.

- Page 5 - Docket No. 13768.496

ATTORNEYS AT LAW
1000 EAGLE GATE TOWER

60 EAST SOUTH TEMPLE

A PROFESSIONAL CORPORATION
SALT LAKE CITY, UTAH 84111

WORKMAN, NYDEGGER & SEELEY

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] In order to describe the manner in which the above-recited and other advantages
and features of the invention can be obtained, a more particular description of the invention
briefly described above will be rendered by reference to specific embodiments thereof which
are illustrated in the appended drawings. Understanding that these drawings depict only
typical embodiments of the invention and are not therefore to be considered to be limiting of
its scope, the invention will be described and explained with additional specificity and detail
through the use of the accompanying drawings in which:

[0012] Figure 1 illustrates a suitable computing system that may implement features of
the present invention;

[0013] Figure 2 illustrates an inverse query engine cooperatively interacting with an
instruction tree to efficiently perform inverse querying against an input;

[0014] Figure 3A illustrates a data structure in which each of multiple queries is
represented in as a forward-only sequence of instructions;

[0015] Figure 3B illustrates a data structure in which the forward-only sequences of
instructions of Figure 3A are merged into a single tree;

[0016] Figure 4 illustrates a flowchart of a method for the computing system to evaluate
the queries using the instruction tree rather than separately evaluating each of the queries;
[0017] Figure 5 illustrates a flowchart of a method for executing instructions in the
instruction tree in a main branch of the instruction tree leading from the main branching
node;

[0018] Figure 6A illustrates a conventional stack; and

[0019] Figure 6B illustrates an argument stack in accordance with the principles of the

present invention.

- Page 6 - Docket No. 13768.496

A PROFESSIONAL CORPORATION
ATTORNEYS AT LAW
1000 EAGLE GATE TOWER
60 EAST SOUTH TEMPLE
SALT LAKE CITY, UTAH 84111

WORKMAN, NYDEGGER & SEELEY

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0020] The principles of the present invention relate to an inverse query engine that uses
an instruction tree to represents the queries to be applied against input, instead of applying
each query individually. Each node in the instruction tree represents executable code. Each
branch of the instruction tree when executed from the root node to a terminating branch
node represents the instructions to be executed to process that query against the input. The
instruction tree is forward-only in that once a node in a tree is processed against an input,
that executable code associated with that node is not ever processed again for that input.
Accordingly, processing resources and time is conserved.

[0021] Turning to the drawings, wherein like reference numerals refer to like elements,
the invention is illustrated as Abeing implemented in a suitable computing environment. The
following description is based on illustrated embodiments of the invention and should not be
taken as limiting the invention with regard to alternative embodiments that are not explicitly
described herein.

[0022] In the description that follows, the invention is described with reference to acts
and symbolic representations of operations that are performed by one or more computers,
unless indicated otherwise. As such, it will be understood that such acts and operations,
which are at times referred to as being computer-executed, include the manipulation by the
processing unit of the computer of electrical signals representing data in a structured form.
This manipulation transforms the data or maintains them at locations in the memory system
of the computer, which reconfigures or otherwise alters the operation of the computer in a
manner well understood by those skilled in the art. The data structures where data are
maintained are physical locations of the memory that have particular properties defined by

the format of the data. However, while the invention is being described in the foregoing

- Page 7 - Docket No. 13768.496

ATTORNEYS AT LAW
1000 EAGLE GATE TOWER

A PROFESSIONAL CORPORATION
60 EAST SOUTH TEMPLE
SALT LAKE CITY, UTAH 84111

WORKMAN, NYDEGGER & SEELEY

context, it is not meant to be limiting as those of skill in the art will appreciate that several of
the acts and operations described hereinafter may also be implemented in hardware. Figure
1 shows a schematic diagram of an example computer architecture usable for these devices.
[0023] For descriptive purposes, the architecture portrayed is only one example of a
suitable environment and is not intended to suggest any limitation as to the scope of use or
functionality of the invention. Neither should the computing systems be interpreted as
having any dependency or requirement relating to anyone or combination of components
illustrated in Figure 1.

[0024] The invention is operational with numerous other general-purpose or special-
purpose computing or communications environments or configurations. Examples of well
known computing systems, environments, and configurations suitable for use with the
invention include, but are not limited to, mobile telephones, pocket computers, personal
computers, servers, multiprocessor systems, microprocessor-based systems, minicomputers,
mainframe computers, and distributed computing environments that include any of the
above systems or devices.

[0025] In its most basic configuration, a computing system 100 typically includes at
least one processing unit 102 and memory 104. The memory 104 may be volatile (such as
RAM), non-volatile (such as ROM, flash memory, etc.), or some combination of 4the two.
This most basic configuration is illustrated in Figure 1 by the dashed line 106.

[0026] The storage media devices may have additional features and functionality. For
example, they may include additional storage (removable and non-removable) including, but
not limited to, PCMCIA cards, magnetic and optical disks, and magnetic tape. Such
additional storage is illustrated in Figure 1 by removable storage 108 and non-removable

storage 110. Computer-storage media include volatile and non-volatile, removable and non-

- Page 8 - Docket No. 13768.496

WORKMAN, NYDEGGER & SEELEY

z =
2. Hu3
3225
5350275
=
@EmbE
O« p 2
Um<!->:
2X35%
524930
S¥gew
dpaz2y
gggm._)
Z 83k
& =t
£78s;

removable media implemented in any method or technology for storage of information such
as computer-readable instructions, data structures, program modules, or other data. Memory
104, removable storage 108, and non-removable storage 110 are all examples of computer-
storage media. Computer-storage media include, but are not limited to, RAM, ROM,
EEPROM, flash memory, other memory technology, CD-ROM, digital versatile disks, other
optical storage, magnetic cassettes, magnetic tape, magnetic disk storage, other magnetic
storage devices, and any other media that can be used to store the desired information and
that can be accessed by the computing system.

[0027] As used herein, the term "module” or "component" can refer to software objects
or routines that execute on the computing system. The different components, modules,
engines, and services described herein may be implemented as objects or processes that
execute on the computing system (e.g., as separate threads). While the system and methods
described herein are preferably implemented in software, implementations in software and
hardware or hardware are also possible and contemplated.

[0028] -Computing system 100 'may also contain communication channels 112 that allow
the host to communicate with other systems and devices over a network 120.
Communication channels 112 are examples of communications media. Communications
media typically embody computer-readable instructions, data structures, program modules,
or other data in a modulated data signal such as a carrier wave or other transport mechanism
and include any information-delivery media. By way of example, and not limitation,
communications media include wired media, such as wired networks and direct-wired
connections, and wireless media such as acoustic, radio, infrared, and other wireless media.
The term computer-readable media as used herein includes both storage media and

communications media.

- Page 9 - Docket No. 13768.496

ATTORNEYS AT LAW
1000 EAGLE GATE TOWER

60 EAST SOUTH TEMPLE

A PROFESSIONAL CORPORATION
SALT LAKE CITY, UTAH 84111

WORKMAN, NYDEGGER & SEELEY

[0029] The computing system 100 may also have input components 114 such as a
keyboard, mouse, pen, a voice-input component, a touch-input device, and so forth. Output
components 116 include screen displays, speakers, printer, etc., and rendering modules
(often called "adapters") for driving them. The computing system 100 has a power supply
118. All these components are well known in the art and need not be discussed at length
here.

[0030] Figure 2 illustrates an environment 200 in which an inverse query engine 202
cooperatively interacts with an instruction tree 203 to efficiently perform inverse querying
against an input to generate query results 204. In the illustrated example, the input is an
electronic message 201. When executed in the computing system 100 illustrated in Figure
1, the electronic message 201 may be received over the communication channels 112 as
represented in Figure 1. Alternatively, the electronic message 201 may be accessed from
memory 104 or storage 108 or 110, or received from input components 114. In one
embodiment, the electronic message is a hierarchically-structured document such as an
eXtensible Markup Language (XML) document or a Simple Object Access Protocol (SOAP)
envelope.

[0031] Although the instruction tree 203 is illustrated schematically as a box in Figure 2,
the instruction tree is actually a hierarchical tree that represents execution paths for a
plurality of queries. Each node of the instruction tree represents an instruction. Each branch
in the instruction tree when executed from the root node to terminating branch node
represents a query.

[0032] To clarify this principle, a specific example is provided with respect to Figures
3A and 3B. However, the instruction tree is not limited to any particular structure. Figure

3A illustrates the processing associated with four queries labeled Q1 through Q6 (see

- Page 10 - Docket No. 13768.496

P
m
2
)
m
U)z -
%Eggﬂi
SEEERE
98<e=5
SEEERE
Zips2s
~Scgd-
ZE& 235
§< w
O
=

corresponding processing sequences 301 through 306) without the use of an instruction tree.
The sequential processing of each query may be logically divided in groups of one or more
computer-executable instructions. These groups are represented in represented in Figure 3A
using groups “a” through “k”. The processing associated with each query is compiled such
that execution of the groups is forward-only. In this description and in the claims, “forward-
only” means that once a group of instructions is executed with respect to an query and
corresponding input, that group of instructions is not again executed with respect to that
query and input combination.

[0033] For example, query Q1 is processed by sequentially executing instruction groups
a, b, c, d and g (see instruction stream 301). Query Q2 is processed by sequentially
executing instruction groups a, b, ¢, e and f (see instruction stream 302). Query Q3 is
processed by sequentially executing instruction groups a, b, ¢, e, f and g (see instruction
stream 303). Query Q4 is processed by sequentially executing instruction group a, b, c, e, f
and h (see instruction stream 304). Query QS5 is processed by sequentially executing
instruction group a, b, ¢, i and j. Query Q6 is processed by sequentially executing
instruction group a, b, c, i and k. Although there may be execution loops within a given
instruction group, execution never proceeds backwards from one instruction group to an
already processed instruction group.

[0034] In one embodiment, the queries are XPATH queries. XPATH is a functional
language for representing queries that are often evaluated against XML documents. During
conventional evaluation of XPATH statements against XML documents, there is significant
looping in order to fully navigate the XML document. For example, if the XML document
has one parent element having at least one child element, at least one of the child elements

having at least one second-order child element, and at least one of the second-order child

- Page 11 - Docket No. 13768.496

WORKMAN, NYDEGGER & SEELEY
A PROFESSIONAL CORPORATION

Fuz
$28
-’!—-uJE
E—-m!—-S
<F
v < By
O DL
‘i’mOa
23 em
oIh%
[:u.\<<
Tgu A

e85

<
vl

elements having at least one third-order child element, there would be a three layer “for”
loop nest conventionally used to navigate the tree. However, since the XPATH evaluation
has no side-effects from one loop to another, the looping process may be flattened (i.e.,
rewritten so that there is only a forward-execution for the evaluation). In particular, the
evaluation could involve selecting applicable parent nodes, selecting application child
nodes, selecting applicable second-order child nodes, and selecting applicable third-order
child nodes. More regarding loop flattening will now be described.

[0035] A loop is an expression that executes a group of one or more sub-expressions
repeatedly. Each repetition is termed an “iteration”. The number of times a loop iterates
over a group of one or more sub-expressions is known as the loop’s “iteration count”.

[0036] Conventional loops run sequentially. A loop with an iteration count of “n”
evaluates its groups of one or more sub-expressions “n” times, one iteration at a time, with
the second iteration beginning only when the first completes. Each iteration has implicit
overhead, such as the stack manipulation required to make function calls.

[0037] Some expressions can be executed in a loop without side-effects. In other words,
one iteration in a loop has no effect on the evaluation or results of any other iteration in the
same loop. Because each iteration is effectively independent, the iterations need not be
performed sequentially. In accordance with the principles of the present invention, each
iteration may be flattened such that all iterations can be performed simultaneously, or in
parallel. XPATH expressions do not have any side-effects. Accordingly, iterations in
XPATH evaluations may be flattened.

[0038] In accordance with the principles of the present invention, flattened loops use

special data structure and virtual machines to execute. Because every iteration is performed

in parallel, the call stack allows arguments to be pushed for each iteration simultaneously.

- Page 12 - Docket No. 13768.496

>

)

—

a4

s8]

(/JZ -
B HEm3
3328
U-]o-—‘l—u.)ﬁ
OgLrEs
O°w<E>:
u_]é>-(3:3[—.
032880
S g035Y
EEgaS
Z & §8§
§< w
O

=

Instructions push and pop arguments in “frames”. Each argument frame has a set of values,
one for each iteration. Simularly, instructions are written to work with argument frames.

[0039] A specific example of loop flattening will now be provided to clarify these
principles. The following illustrates an iterative loop draft in pseudo code and with line
numbers added for clarity. The loop includes a sub-expression called “SetY(GetX(i)

+Get(Y(1))” which iterates for four iterations in which “i” is varied from 0 to 3.

1) int count = 4;

2) for (int1I = 0;. I < count; ++i)
3) {

4) SetY(GetX(i) + GetY(i));
5) b

[0040] This iterative loop requires backtracking. The machine has to repeatedly jump
from line 5 to line 2 to repeat the execution of the sub-expression on line 4.
[0041] The fdlldwihg illustrates pseud(;code of the above after having been subjeéted to

loop flattening. Once again, line numbering is added for clarity.

1) /" First, this gets all 4 X values in parallel

2) int count = 4;

3) int[] x = GetAllX(count); // A special function that can get all X’s
4) /I Next, this gets all Y values in paralle]

5) int[] y = GetAllY (count); // A special function that can get all Y’s
6) //" Now, add all X’s to all Y’s simultaneously

7) x+=y; //this uses a special += operator for array operations

- Page 13 - Docket No. 13768.496

>
[84]
-
8 8]
m
.-
- {1) =
MEET N
mgﬁEEE
o
BEsEE>
M2x02k
NZ2430
SEEICESE
A EEE
Z£788%5
§< %
5

[0042] Note that this sequence does not use backtracking. The execution is forward
only proceeding from line 1 to line 7. In one embodiment, a special virtual machine may be
used to execute these flattened loops. Such a virtual machine uses special instructions (e.g.,
the += opcode shown above) and special processing stacks.

[0043] Conventional evaluation stacks contain individual arguments (see Figure 6A).
However, the stacks for execution of flattened loops contain argument frames as mentioned
above. Such as stack is illustrated in Figure 6B. In Figure 6B, Arg 1.1 is the value of Argl
for the first iteration, Arg 1.2 is the value of Argl for the second iteration, and so on.
Similarly, Arg2.2 is the value of Arg2 for the second iteration. The following pseudo code

defines an example structure of the argument frame.

struct ArgumentFrame

{

int base; // where the stack starts
int top; // where the stack ends

internal int Count

{

get { this.top - this.base + 1};

[0044] As also mentioned above, the opcodes are designed to operate with argument

frames. For example, the Add opcode may work as follows:

- Page 14 - Docket No. 13768.496

WORKMAN, NYDEGGER & SEELEY

ATTORNEYS AT LAW
1000 EAGLE GATE TOWER
60 EAST SOUTH TEMPLE

A PROFESSIONAL CORPORATION
SALT LAKE CITY, UTAH 84111

public Opcode Eval(ProcessingContext context)

{

EvalStack stack = context.Stack;

StackFrame xArg = stack.TopArg; // gives us all Xs

StackFrame yArg = stack.SecondArg; // give us all Ys

// The following line ensures that the iteration counts of both args are equal
// For example, we cannot have 3 Xs added to 4 Ys.
Debug.Assert(xArg.Count == yArg.Count);

/1 Perform additions - do all them simultaneously

// This is the special += operator mentioned above

for (int x = xArg.base, y = yArg.base ; i < xArg.top; ++Xx)

{

yArg.Update(y, stack[x] + stack[y]);

¥

context.Stack.PopFrame();

[0045] Figure 3B illustrates an example instruction tree 310 in which each of the
example queries of Figure 3A are merged. Specifically, a “stem” of the instruction tree is
defined as those instructions that lead from a root node of the instruction tree to the first
branching node of the instruction tree. Referring to Figure 3A, the instruction tree 310 has a
root node “a” and a first branching node “B1”. Accordingly, the stem of the instruction tree
is represented by the instruction group sequence “a”, “b” and “c”. The first branching node
will also be referred to herein as a “first-order” branching node or “main” branching node.

For example, node “B1” is the first-order or main branching node of instruction tree 310.

- Page 15 - Docket No. 13768.496

A PROFESSIONAL CORPORATION
ATTORNEYS AT LAW
1000 EAGLE GATE TOWER
60 EAST SOUTH TEMPLE
SALT LAKE CITY, UTAH 84111

WORKMAN, NYDEGGER & SEELEY

[0046] Branching from the first-order branching node are several first-order or main
branches. For example, the instruction tree 310 has three first-order branches, one
beginning with instruction group “d”, a second beginning with instruction group “e”, and a
third beginning with instruction group “i”. The first-order branches may potentially contain
second-order branching node extending into second order branches, and so on and so forth.
[0047] For example, the first-order branch beginning with instruction group “d” has no
second-order branching node.

[0048] The first-order branch beginning with instruction group “e” does have a second-
order branching node “B2” that extends into three second-order branches. One of these
second-order branches leads directly into a termination node for query Q2. A second
second-order branch includes instruction group “g”. A third second-order branch includes
instruction group “h”.

[0049] The first-order branch beginning with instruction group “i” also has a second-
order branching node “B3” that extends into two second-order branches. One of the second-

(13444
J

order branches includes instruction group “j”, and the other includes instruction group “k”.
[0050] As one navigates from the root node to the terminating node in each ancestral
line of the instruction tree 310, one finds the execution path for each of the queries of Figure
3A with the inclusion of the occasional branching node to help preserve context at the
appropriate time.

[0051] The processing of the instruction tree 310 will be described in further detail with
reference to Figures 4 and 5. Figure 4 illustrates a flowchart of a method 400 for the
computing system to evaluate the plurality of queries using the instruction tree rather than

separately evaluating each of the plurality of queries thereby conserving processing

resources.

- Page 16 - Docket No. 13768.496

ATTORNEYS AT LAW
1000 EAGLE GATE TOWER

A PROFESSIONAL CORPORATION
60 EAST SOUTH TEMPLE
SALT LAKE CITY, UTAH 84111

WORKMAN, NYDEGGER & SEELEY

[0052] The inverse query process begins in response to having received an electronic
message (act 401). For example, referring to Figure 2, the inverse query engine 202
receives the electronic message 201. The electronic message 201 may be received from
another network location and/or may be accessed locally.

[0053] Then, the inverse query engine sequentially executes instructions in the
instruction tree leading from the root node to a first-order branching node in the instruction
tree (act 402). Referring to Figure 3B, node “a” is the root node, while branch “B1” is a
main branching node. Accordingly, in the example of Figure 3B, execution of the
instruction tree 310 from the root node to the main branching node involves executing in
sequence instruction groups “a”, “b” and “c”.

[0054] The inverse query engine then performs a functional, result-oriented step for
executing the remainder of the instruction tree without redundantly executing the
instructions in the instruction tree leading from the root node to a main branching node in
the instruction tree (step 410). This step may include any corresponding acts for
accomplishing this result. However, in the illustrated example of Figure 4, step 410 includes
corresponding acts 411 through 413.

[0055] Specifically, upon encountering the main branching node in the instruction tree,
the inverse query engine preserves processing context for the sequential execution up to the
main branching node (act 411). With reference to the example of Figure 3B, after
sequentially executing instruction groups “a”, “b” and “c”, the inverse query engine 202
encounters a branching indicator B1. This prompts the inverse query engine to preserve the
processing context for execution up to that point. This processing context will also be

referred to as “first-order processing context” since it represents the processing context that

- Page 17 - Docket No. 13768.496

ATTORNEYS AT LAW
1000 EAGLE GATE TOWER

60 EAST SOUTH TEMPLE

A PROFESSIONAL CORPORATION
SALT LAKE CITY, UTAH 84111

WORKMAN, NYDEGGER & SEELEY

resulted from execution up to the first-order branching node. The processing context may be
preserved in volatile or non-volatile memory or storage.

[0056] Once the first-order processing context is preserved, the inverse query engine
202 continues executing instructions in the instruction tree in a main branch of the
instruction tree leading from the main or first-order branching node (act 412). For example,
referring to Figure 3B, the inverse query engine sequentially processes instruction groups
“d” and “g”. This leads to terminating node Q1 indicating that processing has led to a result
for query Q1.

[0057] Upon completing execution of this first-order branch, the inverse query engine
determines whether or not there are more main branches (decision block 413). If there are
not any more (No in decision block 413), then the inverse query engine has finished
evaluating the electronic message. However, in this example of Figure 3B, there are more
main branches to be evaluated (Yes in decision block 413).

[0058] Accordingly, the inverse query engine restores the first-order processing context
(act 414) as a starting point for executing the instruction groups in the next main branch (act
412). This contrasts sharply with the prior art in which processing would normally begin at
instruction group “a” for complete execution of all instruction groups for the next query.
Instead, referring to Figure 3B, the inverse query engine restores the processing context first
preserved upon encountering main branching node B1, and then uses that restored

1%

processing context to execute in sequence instruction groups “e” and “f’. After executing
instructions groups “e” and “f”, however, processing of this second main branch is not yet

complete, for the second main branch includes several sub-branches. The more general case

for how to address such sub-branches is illustrated with respect to the flowchart of Figure 5.

- Page 18 - Docket No. 13768.496

WORKMAN, NYDEGGER & SEELEY
A PROFESSIONAL CORPORATION
ATTORNEYS AT LAW
1000 EAGLE GATE TOWER
60 EAST SOUTH TEMPLE
SALT LAKE CITY, UTAH 84111

[0059] More generally speaking, upon encountering an N’th order branching node
(where “N” is a positive integer), the inverse query engine preserves the N’th order
processing context (act 501), and then executes the N’th order branch (act 502). Note that
execution of the N’th order branch may involve the navigation through yet more sub-
branches. Navigation through these further sub-branches may also be performed in response
to encountering higher-order branching nodes using the method 500 of Figure 5, only with
higher value of N. Accordingly, the method 500 of Figure S is recursively performed as
needed to navigate the entire instruction tree. Once execution of the N’th order branch is
complete (act 502), the inverse query engine determines whether or not there are more N’th
order branches (decision block 503). If there are more (Yes in decision block 503), then the
inverse query engine restores the N’th order processing context (act 504), and executes the
next N’th order branch. If there are not any more N’th order branches to execute, then the
method 500 continues for lesser-order tree navigation (act 505).

[0060] Returning to the example of Figure 3B, upon encountering second-order
branching node “B2”, the inverse query engine processes the first second-order branch. In
this example, the first second-order branch is represented simply by Q2, indicating that the
result of processing up to that point is the result of query Q2. The inverse query engine then
restores the second-order processing context resulting from execution until node B2, and
then executes the second second-order branch including instruction group “g”. At this stage,
the result for query Q3 is obtained. Then, the inverse query engine once again restores the
second-order processing context and executes the last second-order branch including
instruction group “h”. At this stage, the result for query Q4 is obtained.

[0061] Furthermore, at this state, there are no more second-order branches to be

processed for this main branch. Accordingly, the inverse query engine determines that the

- Page 19 - Docket No. 13768.496

ATTORNEYS AT LAW
1000 EAGLE GATE TOWER

60 EAST SOUTH TEMPLE
SALT LAKE CITY, UTAH 84111

WORKMAN, NYDEGGER & SEELEY
A PROFESSIONAL CORPORATION

processing for this first-order branch is likewise complete (completing act 412). The inverse
query engine then determinqs if there are any more first-order branches (decision block
413). In this case, there is a final first-order branch beginning with instruction group “i”
(Yes 1in decision block 413). Accordingly, the inverse query engine then restores the first-
order processing context (act 414) and then processes the final first-order branch (back to
the final round of act 412).

[0062] This execution of the final branch would begin by executing instruction group “i”
followed by the encountering of another second-order branching node “B3”. Then, the
inverse query engine would preserve the second-order processing context that results from
execution to that point. Subsequently, the first second-order branch including instruction
group “5” would be processed thereby resulting in the result for query Q5. The inverse
query engine would restore the second-order processing context resulting from execution to
the branching node B3, and then use that processing context to execute the final second
order branch including instruction group “k”. This would generate the query result for query
Q6.

[0063] This would also complete execution for the final first-order branch. Accordingly,
returning to Figure 4, the inverse query engine would determine that there are no more main
branches to be processed (No in decision block 413), and the processing of the instruction to
would then end.

[0064] Note that in this entire execution of the instruction tree, once an instruction group
has been executed with a certain processing context and against a certain input, that
instruction group is never executed again with that same processing context and input.

Accordingly, the inverse query engine in accordance with the principles of the present

invention allows for more processor efficient evaluation of multiple queries against an input.

- Page 20 - Docket No. 13768.496

ATTORNEYS AT LAW
1000 EAGLE GATE TOWER

60 EAST SOUTH TEMPLE

A PROFESSIONAL CORPORATION
SALT LAKE CITY, UTAH 84111

WORKMAN, NYDEGGER & SEELEY

This allows for even better scalability of the inverse query engine to an environment in
which inputs may be frequently received (e.g., in a server env-ironment) for evaluation
against multiple queries.

[0065] The present invention may be embodied in other specific forms without departing
from its spirit or essential characteristics. The described embodiments are to be considered
in all respects only as illustrative and not restrictive. The scope of the invention is,
therefore, indicated by the appended claims rather than by the foregoing description. All
changes, which come within the meaning and range of equivalency of the claims, are to be
embraced within their scope.

[0066] What is claimed and desired secured by United States Letters Patent is:

- Page 21 - Docket No. 13768.496

	2004-02-20 Specification

